3.123 \(\int \frac{\sin ^2(e+f x)}{\sqrt{a+b \tan ^2(e+f x)}} \, dx\)

Optimal. Leaf size=93 \[ \frac{a \tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 f (a-b)^{3/2}}-\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f (a-b)} \]

[Out]

(a*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*(a - b)^(3/2)*f) - (Cos[e + f*x]*Sin[e +
f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*(a - b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.107026, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3663, 471, 12, 377, 203} \[ \frac{a \tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 f (a-b)^{3/2}}-\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 f (a-b)} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^2/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(a*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*(a - b)^(3/2)*f) - (Cos[e + f*x]*Sin[e +
f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*(a - b)*f)

Rule 3663

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff^(m + 1))/f, Subst[Int[(x^m*(a + b*(ff*x)^n)^p)/(c^2 + ff^2*x^2
)^(m/2 + 1), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sin ^2(e+f x)}{\sqrt{a+b \tan ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2}{\left (1+x^2\right )^2 \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 (a-b) f}+\frac{\operatorname{Subst}\left (\int \frac{a}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 (a-b) f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 (a-b) f}+\frac{a \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 (a-b) f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 (a-b) f}+\frac{a \operatorname{Subst}\left (\int \frac{1}{1-(-a+b) x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 (a-b) f}\\ &=\frac{a \tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{2 (a-b)^{3/2} f}-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{2 (a-b) f}\\ \end{align*}

Mathematica [C]  time = 3.00537, size = 270, normalized size = 2.9 \[ -\frac{\sin (2 (e+f x)) \sec ^2(e+f x) \left (\sqrt{2} a (b-a) \sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}}}{\sqrt{2}}\right ),1\right )+\sqrt{2} a^2 \sqrt{\frac{\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \Pi \left (-\frac{b}{a-b};\left .\sin ^{-1}\left (\frac{\sqrt{\frac{(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt{2}}\right )\right |1\right )+(a-b) ((a-b) \cos (2 (e+f x))+a+b)\right )}{4 \sqrt{2} f (a-b)^2 \sqrt{\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^2/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-(((a - b)*(a + b + (a - b)*Cos[2*(e + f*x)]) + Sqrt[2]*a*(-a + b)*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Cs
c[e + f*x]^2)/b]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1] + S
qrt[2]*a^2*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*EllipticPi[-(b/(a - b)), ArcSin[Sqrt[((
a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])*Sec[e + f*x]^2*Sin[2*(e + f*x)])/(4*Sqrt[2]
*(a - b)^2*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2])

________________________________________________________________________________________

Maple [C]  time = 0.206, size = 795, normalized size = 8.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

-1/2/f/((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/(a-b)*sin(f*x+e)*(2^(1/2)*(1/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^(1
/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*b^(1/2)*(a-b)
^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticF((cos(f*x+e)-1)*((2*I
*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)/sin(f*x+e),((8*I*b^(3/2)*(a-b)^(1/2)-4*I*b^(1/2)*(a-b)^(1/2)*a+a^2-8*a*b+
8*b^2)/a^2)^(1/2))*a*sin(f*x+e)-2*2^(1/2)*(1/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)+cos(f*x
+e)*a-b*cos(f*x+e)+b)/(cos(f*x+e)+1))^(1/2)*(-2/a*(I*cos(f*x+e)*b^(1/2)*(a-b)^(1/2)-I*b^(1/2)*(a-b)^(1/2)-cos(
f*x+e)*a+b*cos(f*x+e)-b)/(cos(f*x+e)+1))^(1/2)*EllipticPi((cos(f*x+e)-1)*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(
1/2)/sin(f*x+e),-1/(2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)*a,(-(2*I*b^(1/2)*(a-b)^(1/2)-a+2*b)/a)^(1/2)/((2*I*b^(1/2)*
(a-b)^(1/2)+a-2*b)/a)^(1/2))*a*sin(f*x+e)+cos(f*x+e)^3*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*a-cos(f*x+e)^
3*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*b-cos(f*x+e)^2*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*a+cos(f*x
+e)^2*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*b+cos(f*x+e)*((2*I*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*b-((2*I
*b^(1/2)*(a-b)^(1/2)+a-2*b)/a)^(1/2)*b)/(cos(f*x+e)-1)/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/cos(f*x+e)^2)^(1/2)/
cos(f*x+e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\sqrt{b \tan \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^2/sqrt(b*tan(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 3.51995, size = 1667, normalized size = 17.92 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(8*(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - a*sqrt(-a + b)
*log(128*(a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 + b^4)*cos(f*x + e)^8 - 256*(a^4 - 5*a^3*b + 9*a^2*b^2 - 7*a*b^3
 + 2*b^4)*cos(f*x + e)^6 + 32*(5*a^4 - 34*a^3*b + 77*a^2*b^2 - 72*a*b^3 + 24*b^4)*cos(f*x + e)^4 + a^4 - 32*a^
3*b + 160*a^2*b^2 - 256*a*b^3 + 128*b^4 - 32*(a^4 - 11*a^3*b + 34*a^2*b^2 - 40*a*b^3 + 16*b^4)*cos(f*x + e)^2
- 8*(16*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^7 - 24*(a^3 - 4*a^2*b + 5*a*b^2 - 2*b^3)*cos(f*x + e)^5 +
 2*(5*a^3 - 29*a^2*b + 48*a*b^2 - 24*b^3)*cos(f*x + e)^3 - (a^3 - 10*a^2*b + 24*a*b^2 - 16*b^3)*cos(f*x + e))*
sqrt(-a + b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/((a^2 - 2*a*b + b^2)*f), -1/8*(4
*(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - sqrt(a - b)*a*arctan(-1
/4*(8*(a^2 - 2*a*b + b^2)*cos(f*x + e)^5 - 8*(a^2 - 3*a*b + 2*b^2)*cos(f*x + e)^3 + (a^2 - 8*a*b + 8*b^2)*cos(
f*x + e))*sqrt(a - b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*co
s(f*x + e)^4 - a^2*b + 3*a*b^2 - 2*b^3 - (a^3 - 6*a^2*b + 9*a*b^2 - 4*b^3)*cos(f*x + e)^2)*sin(f*x + e))))/((a
^2 - 2*a*b + b^2)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{2}{\left (e + f x \right )}}{\sqrt{a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**2/(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sin(e + f*x)**2/sqrt(a + b*tan(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\sqrt{b \tan \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^2/sqrt(b*tan(f*x + e)^2 + a), x)